Handwritten HW 32

Page 374

12. Find the closest point to **y** in the subspace W spanned by \mathbf{v}_1 and \mathbf{v}_2 .

$$\mathbf{y} = \begin{bmatrix} 3\\-1\\1\\13 \end{bmatrix}, \, \mathbf{v}_1 = \begin{bmatrix} 1\\-2\\-1\\2 \end{bmatrix}, \, \mathbf{v}_2 = \begin{bmatrix} -4\\1\\0\\3 \end{bmatrix}$$

Solution:

16. Let \mathbf{y} , \mathbf{v}_1 , and \mathbf{v}_2 be as in Exercise 12. Find the distance from \mathbf{y} to the subspace of \mathbb{R}^4 spanned by \mathbf{v}_1 and \mathbf{v}_2 .

Solution:

19. Let
$$\mathbf{u}_1 = \begin{bmatrix} 1\\1\\-2 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 5\\-1\\2 \end{bmatrix}$, and $\mathbf{u}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$. Note that \mathbf{u}_1 and \mathbf{u}_2

are orthogonal but that \mathbf{u}_3 is not orthogonal to \mathbf{u}_1 or \mathbf{u}_2 . It can be shown that \mathbf{u}_3 is not in the subspace W spanned by \mathbf{u}_1 and \mathbf{u}_2 . Use this fact to construct a nonzero vector \mathbf{v} in \mathbb{R}^3 that is orthogonal to \mathbf{u}_1 and \mathbf{u}_2 .

Solution:

Page 375

20. Let \mathbf{u}_1 and \mathbf{u}_2 be as in Exercise 19, and let $\mathbf{u}_4 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$. It can be shown that

 \mathbf{u}_4 is not in the subspace W spanned by \mathbf{u}_1 and \mathbf{u}_2 . Use this face to construct a nonzero vector \mathbf{v} in \mathbb{R}^3 that is orthogonal to \mathbf{u}_1 and \mathbf{u}_2 .

Solution: